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1. INTRODUCTION

● 2 annotated resources for event processing in economic news.
● 1 pilot study on economic event detection.
● Research goal: structured factual and sentiment data from economic news text.

– Event extraction: Scenario templates of real-world economic events.
– Sentiment analysis: 

● Aspect-based approach: Which opinion is expressed about what? Informed by EE?
● Implicit investor sentiment: Common-sense subjectivity connotations, “polar facts”. 

Economic news text contains less explicit sentiment expressions than other genres (Van de 
Kauter 2015).
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1. INTRODUCTION: APPLICATIONS

● Applications:

● Economics: academic event studies (MacKinlay, 1997); assessing impact of 
news events (Boudoukh et al., 2016)

● Downstream financial applications: Security price prediction, business 
intelligence, (semi)-automated trading strategies, etc.

cf. NLP APIs for market sentiment and
(financial) IE: SentDex, OpenCalais, TheySay)
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1. INTRODUCTION: EVENT PROCESSING

● What are events?
– Linguistic and ontological: only dynamic actions or also static situations?
– No one-to-one linguistic mapping: verbs → eventive, nominals → objects?
– Vendler (1967) classification based on durativity, dynamicity,

and telicity.
● Approaches to event processing in NLP:

– As topics in document stream (conflated with topic modeling).
– Temporal processing: time relations (Time-ML, TempEval)
– Scenario templates: prototypical semantic schemata of events

 that capture the content. (MUC-3, ACE, ERE)
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2. SENTIFM PILOT STUDY: DATASET DESCRIPTION

● SentiFM dataset enables event mention detection and typing ( != event extraction with argument 
slots).

● Event conceptualization: “textually reported real-world occurrences, actions, situations involving 
companies”

● 7 companies selected for sector diversification.
● 2522 event mentions in 497 news articles from the Financial Times (2004-2013) in English.
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2. SENTIFM PILOT STUDY: DATASET DESCRIPTION

● Dutch counterpart available  (Lefever and Hoste, 2016).
● Validity of the annotation scheme was evaluated on 

Dutch subset: 
● 78.41% Inter-annotator F1-score.

● Event types:
● 10 event types, typology constructed iteratively on

corpus subsample.
● Type overlap with independently created

 economic event typologies:
StockSonar (Feldman et al., 2011) and SPEED 
ontology (Hogenboom, 2013).
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2. SENTIFM PILOT STUDY: INTRODUCTION

● Current methods are pattern- or knowledge-based (Feldman et al., 2011; Arendarenko and 
Kakkonen, 2012; Hogenboom et al., 2013; Du et al., 2016): largely handmade ontologies.
● Manual work, captures lexical variation poorly.

● Supervised, data-driven methods: potential to generalize over lexical variation.

→ requires annotated gold-standard dataset.

● Currently no resources exist for supervised event detection in economic domain.
● In general-domain event detection: large amount of resources (e.g. ACE/ERE (TAC-KBP) (Aguilar 

et al., 2014)).
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2. SENTIFM PILOT STUDY: TASK

● Goal: provide a baseline for the dataset.

● Task: Sentence-level event typing, multi-label classification.

“However, revenues from voice and text fell in the period.”
→ Turn-over event

“So far, free cash flow has been used to finance share buybacks and dividend increases.” 
→ Share buyback event

“It will increase the number of Barclays’ customers in France by 25 per cent.” 
→ Sales Volume event
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2. SENTIFM PILOT STUDY: CLASSIFIERS

1) Feature-engineering + SVM.
● Lexical features: bag-of-n-gram (token, char, lemma), special token presence.
● Syntactic features: PoS and NER-tags.
● Kernels: linear and RBF.

2) wvec + LSTM:
● Pre-trained, hold-in set GloVe.
● Pre-trained, 6B corpus GloVe.
● No pre-trained, token-sequence input.

● Pre-trained vectors chosen from multiple candidates by quality evaluation on analogy task.
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2. SENTIFM EXPERIMENTS: SET-UP

● Evaluation: support-weighted macro-F1 on 10% random hold-out test.
● Hyper-parameter optimization: 

● SVM-RBF: 5-fold cross-validation, grid-search.
● SVM-Linear: No optimization, default LibSVM hyper-parameters.
● LSTM: 3-fold cross-validation, randomized-search (32 it.).

● SVM: one-vs-rest.
● LSTM: multi-label & one-vs-rest (for best input).
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2. SENTIFM EXPERIMENT RESULTS: ALL SYSTEMS
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2. SENTIFM EXPERIMENT RESULTS: 
BEST SVM & LSTM SYSTEM, SCORES BY TYPE
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2. SENTIFM EXPERIMENTS: LIMITATIONS

● Corpus collection:
● Keyword-search to retrieve articles per event type: introduces lexical bias.
● Type coverage could be improved: 18 event types in Boudhouk et al. (2016) vs. our 10 types.

● Baseline classification too elementary:
● Task: Our data-set allows for token-span event mention detection instead of sentence-level.
● Straight-forward classifiers: much room for improvement and more advanced approaches.
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3. SENTIVENT ENGLISH EVENT CORPUS

● New corpus for event extraction with participants:
● Yahoo Finance news aggregator: Randomly crawled for all companies in the S&P 500.
● Selected 30 companies for based on sector diversification and reporting frequency.
● Corpus article time-span: 11 months (April 2017 – March 2018).
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1. EVENT EXTRACTION: AS SEMANTIC FRAMES

● Events are prototypical scenarios conceptualized similar to semantic frames.
– Trigger: lexical unit that evokes the event.
– Type, subtype: domain-specific event typology of economic events.
– Arguments: participants in the event: who/what is involved with what 

prototypical semantic role?
– Attributes: modality (certain/other) and polarity (negated/asserted).
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4. SENTIVENT ENGLISH: EVENT ANNOTATION

● Event annotation guidelines:
● Adapted from Rich ERE guidelines.
● Company-specific, business news event typology: Developed in cooperation with financial 

domain expert.
● 18 types, 43 subtypes: Balance coverage, distinctiveness, and descriptiveness.
● Annotation done in WebAnno web-based annotation tool.
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4. SENTIVENT ENGLISH: CORPUS STATISTICS

● 300 annotated articles containing 6000 events (approx. 170.000 tokens).
● Macroeconomics: largest types is a left-over class: re-conceptualize this class, split this into 

multiple classes.
● Other type frequency along the line one would expect in news reporting.
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4. SENTIVENT ENGLISH: INTERANNOTATOR STUDY

• 3 annotators annotated 30 randomly selected documents.

• Event trigger span detection:

- Token-based agreement: 
 Fleiss’ kappa: 0.57 κ: moderate agreement (Landis & Koch 1977)

 Pairwise F1-score: 0.60

• Pairwise event nugget score (Liu et al. 2015):

- Incorporates dice coefficient of partial span matches.

- Pairwise Span F1-score: 0.61

- Attributes (type, subtype, modality, polarity): All attribute F1-score: 0.44

 Type accuracy: 0.88

 Subtype accuracy: 0.82

 Modality accuracy: 0.88

 Polarity accuracy: 0.99

Event trigger span detection is 
difficult: unsurprising in semantic 
annotation.

Typology and attributes report 
good accuracy.
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4. CONCLUSION

● We presented 2 of the first annotated for event processing in the business news-
domain.

● SentiFM economic event typing dataset.
● SENTiVENT economic extraction dataset.

● A pilot study on event typing with satisfactory results.
● SVM 73% F1-score

● Future research will focus on full event extraction with participants and attributes.
● Lexical variation in event types: Knowledge-base and semi-supervised extensions 

to supervised methods.
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